Cancer – References

Cancer – References

  1. Anand, P. et al. Cancer is a preventable disease that requires major lifestyle changes. Pharm Res 25, 2097-2116 (2008). https://doi.org:10.1007/s11095-008-9661-9
  2. Araujo, J., Cai, J. & Stevens, J. Prevalence of Optimal Metabolic Health in American Adults: National Health and Nutrition Examination Survey 2009-2016. Metab Syndr Relat Disord 17, 46-52 (2019). https://doi.org:10.1089/met.2018.0105
  3. Boersma, P., Black, L. I. & Ward, B. W. Prevalence of Multiple Chronic Conditions Among US Adults, 2018. Prev Chronic Dis 17, E106 (2020). https://doi.org:10.5888/pcd17.200130
  4. Cancer Statistics, National Cancer Institute.
  5. Business_Insider. Charts show a sharp rise in the rate of young adults getting cancer before age 50, 2024).
  6. Trujillo, E. B., Hays, C., Regan, K., Ross, S. & Seifried, H. Nutrition Research Funding Trends and Focus Areas at the US National Cancer Institute. JNCI Cancer Spectr 6 (2022). https://doi.org:10.1093/jncics/pkac064
  7. Lim, S. M., Kim, H. C. & Lee, S. Psychosocial impact of cancer patients on their family members. Cancer Res Treat 45, 226-233 (2013). https://doi.org:10.4143/crt.2013.45.3.226
  8. American_Cancer_Society. Global Cancer Facts & Figures 5th Edition. (www.cancer.gov).
  9. American_Cancer_Society. The Costs of Cancer 2020 Edition. (www.fightcancer.org).
  10. Armstrong, G. T. et al. Aging and risk of severe, disabling, life-threatening, and fatal events in the childhood cancer survivor study. J Clin Oncol 32, 1218-1227 (2014). https://doi.org:10.1200/JCO.2013.51.1055
  11. Centers_for_Disease_Control. Annual Out-of-Pocket Expenditures and Financial Hardship Among Cancer Survivors Aged 18–64 Years — United States, 2011–2016. (www.cdc.gov).
  12. Santucci, C. et al. Trends in cancer mortality under age 50 in 15 upper-Middle and high-income countries. J Natl Cancer Inst (2024). https://doi.org:10.1093/jnci/djae288
  13. Patel, S. G., Karlitz, J. J., Yen, T., Lieu, C. H. & Boland, C. R. The rising tide of early-onset colorectal cancer: a comprehensive review of epidemiology, clinical features, biology, risk factors, prevention, and early detection. Lancet Gastroenterol Hepatol 7, 262-274 (2022). https://doi.org:10.1016/S2468-1253(21)00426-X
  14. Liang, J. et al. Incidence Trends in Upper Gastrointestinal Cancer in Young Adults: A Nationwide Time-Trend Analysis Using 2001-2019 US Cancer Statistics Databases. Am J Gastroenterol (2024). https://doi.org:10.14309/ajg.0000000000003068
  15. oss, A. et al. Risk factors behind the increase of early-onset cancer in Italian adolescents and young adults: An investigation from the Italian AYA Working group. Eur J Cancer 212, 115042 (2024). https://doi.org:10.1016/j.ejca.2024.115042
  16. Yale_Medicine. What to Know About Rising Rates of ‘Early-Onset’ Cancer, 2024).
  17. American_Cancer_Society. 2024—First Year the US Expects More than 2M New Cases of Cancer, 2024).
  18. Centers_for_Disease_Control. Heart Disease and Cancer Deaths — Trends and Projections in the United States, 1969–2020. (www.cdc.gov, 2016).
  19. National_Cancer_Institute. The Genetics of Cancer.
  20. Marino, P. et al. Healthy Lifestyle and Cancer Risk: Modifiable Risk Factors to Prevent Cancer. Nutrients 16 (2024). https://doi.org:10.3390/nu16060800
  21. Juul, F., Parekh, N., Martinez-Steele, E., Monteiro, C. A. & Chang, V. W. Ultra-processed food consumption among US adults from 2001 to 2018. Am J Clin Nutr 115, 211-221 (2022). https://doi.org:10.1093/ajcn/nqab305
  22. Wang, L. et al. Trends in Consumption of Ultraprocessed Foods Among US Youths Aged 2-19 Years, 1999-2018. JAMA 326, 519-530 (2021). https://doi.org:10.1001/jama.2021.10238
  23. Cathey, A. L. et al. Exploratory profiles of phenols, parabens, and per- and poly-fluoroalkyl substances among NHANES study participants in association with previous cancer diagnoses. J Expo Sci Environ Epidemiol 33, 687-698 (2023). https://doi.org:10.1038/s41370-023-00601-6
  24. Parkinson, L. V., Geueke, B. & Muncke, J. Potential mammary carcinogens used in food contact articles: implications for policy, enforcement, and prevention. Front Toxicol 6, 1440331 (2024). https://doi.org:10.3389/ftox.2024.1440331
  25. Kassotis, C. D. et al. Endocrine-disrupting chemicals: economic, regulatory, and policy implications. Lancet Diabetes Endocrinol 8, 719-730 (2020). https://doi.org:10.1016/S2213-8587(20)30128-5
  26. Modica, R., Benevento, E. & Colao, A. Endocrine-disrupting chemicals (EDCs) and cancer: new perspectives on an old relationship. J Endocrinol Invest 46, 667-677 (2023). https://doi.org:10.1007/s40618-022-01983-4
  27. Warburg, O. On respiratory impairment in cancer cells. Science 124, 269-270 (1956). 
  28. Fukushi, A., Kim, H. D., Chang, Y. C. & Kim, C. H. Revisited Metabolic Control and Reprogramming Cancers by Means of the Warburg Effect in Tumor Cells. Int J Mol Sci 23 (2022). https://doi.org:10.3390/ijms231710037
  29. Barba, I., Carrillo-Bosch, L. & Seoane, J. Targeting the Warburg Effect in Cancer: Where Do We Stand? Int J Mol Sci 25 (2024). https://doi.org:10.3390/ijms25063142
  30. Vaupel, P., Schmidberger, H. & Mayer, A. The Warburg effect: essential part of metabolic reprogramming and central contributor to cancer progression. Int J Radiat Biol 95, 912-919 (2019). https://doi.org:10.1080/09553002.2019.1589653
  31. Gasparre, G., Porcelli, A. M., Lenaz, G. & Romeo, G. Relevance of mitochondrial genetics and metabolism in cancer development. Cold Spring Harbor perspectives in biology 5 (2013). https://doi.org:10.1101/cshperspect.a011411
  32. Stine, Z. E., Schug, Z. T., Salvino, J. M. & Dang, C. V. Targeting cancer metabolism in the era of precision oncology. Nat Rev Drug Discov 21, 141-162 (2022). https://doi.org:10.1038/s41573-021-00339-6
  33. Winesett, S. P., Bessone, S. K. & Kossoff, E. H. The ketogenic diet in pharmacoresistant childhood epilepsy. Expert review of neurotherapeutics 15, 621-628 (2015). https://doi.org:10.1586/14737175.2015.1044982
  34. Weber, D. A.-G., S. Tulipan, J. Catalano, L. Feichtinger, RG. Kofler, B. Ketogenic diet in the treatment of cancer – Where do we stand? Molecular Metabolism (2019). https://doi.org:https://doi.org/10.1016/j.molmet.2019.06.026
  35. Poff, A. et al. Targeting the Warburg effect for cancer treatment: Ketogenic diets for management of glioma. Semin Cancer Biol (2017). https://doi.org:10.1016/j.semcancer.2017.12.011
  36. Poff, A. M., Ward, N., Seyfried, T. N., Arnold, P. & D’Agostino, D. P. Non-Toxic Metabolic Management of Metastatic Cancer in VM Mice: Novel Combination of Ketogenic Diet, Ketone Supplementation, and Hyperbaric Oxygen Therapy. PLoS One 10, e0127407 (2015). https://doi.org:10.1371/journal.pone.0127407
  37. Poff, A. M., Ari, C., Seyfried, T. N. & D’Agostino, D. P. The ketogenic diet and hyperbaric oxygen therapy prolong survival in mice with systemic metastatic cancer. PLoS One 8, e65522 (2013). https://doi.org:10.1371/journal.pone.0065522
  38. Qin, J. et al. Ketogenic diet reshapes cancer metabolism through lysine beta-hydroxybutyrylation. Nat Metab 6, 1505-1528 (2024). https://doi.org:10.1038/s42255-024-01093-w
  39. Murphy, S. et al. Ketogenic Diet Alters the Epigenetic and Immune Landscape of Prostate Cancer to Overcome Resistance to Immune Checkpoint Blockade Therapy. Cancer Res 84, 1597-1612 (2024). https://doi.org:10.1158/0008-5472.CAN-23-2742
  40. Li, J., Zhang, H. & Dai, Z. Cancer Treatment With the Ketogenic Diet: A Systematic Review and Meta-analysis of Animal Studies. Front Nutr 8, 594408 (2021). https://doi.org:10.3389/fnut.2021.594408
  41. Otto, C. et al. Growth of human gastric cancer cells in nude mice is delayed by a ketogenic diet supplemented with omega-3 fatty acids and medium-chain triglycerides. BMC Cancer 8, 122 (2008). https://doi.org:10.1186/1471-2407-8-122
  42. Zahra, A. et al. Consuming a Ketogenic Diet while Receiving Radiation and Chemotherapy for Locally Advanced Lung Cancer and Pancreatic Cancer: The University of Iowa Experience of Two Phase 1 Clinical Trials. Radiation research 187, 743-754 (2017). https://doi.org:10.1667/RR14668.1
  43. Hopkins, B. D. et al. Suppression of insulin feedback enhances the efficacy of PI3K inhibitors. Nature 560, 499-503 (2018). https://doi.org:10.1038/s41586-018-0343-4
  44. Lussier, D. M. et al. Enhanced immunity in a mouse model of malignant glioma is mediated by a therapeutic ketogenic diet. BMC Cancer 16, 310 (2016). https://doi.org:10.1186/s12885-016-2337-7
  45. Healy, M. E. et al. Dietary effects on liver tumor burden in mice treated with the hepatocellular carcinogen diethylnitrosamine. J Hepatol 62, 599-606 (2015). https://doi.org:10.1016/j.jhep.2014.10.024
  46. Nakamura, K., Tonouchi, H., Sasayama, A. & Ashida, K. A Ketogenic Formula Prevents Tumor Progression and Cancer Cachexia by Attenuating Systemic Inflammation in Colon 26 Tumor-Bearing Mice. Nutrients 10 (2018). https://doi.org:10.3390/nu10020206
  47. Cortez, N. E. et al. A Ketogenic Diet in Combination with Gemcitabine Mitigates Pancreatic Cancer-Associated Cachexia in Male and Female KPC Mice. Int J Mol Sci 24 (2023). https://doi.org:10.3390/ijms241310753
  48. Beck, S. A. & Tisdale, M. J. Effect of insulin on weight loss and tumour growth in a cachexia model. Br J Cancer 59, 677-681 (1989). https://doi.org:10.1038/bjc.1989.140
  49. Hao, G. W. et al. Growth of human colon cancer cells in nude mice is delayed by ketogenic diet with or without omega-3 fatty acids and medium-chain triglycerides. Asian Pac J Cancer Prev 16, 2061-2068 (2015). https://doi.org:10.7314/apjcp.2015.16.5.2061
  50. Mavropoulos, J. et al. The effects of varying dietary carbohydrate and fat content on survival in a murine LNCaP prostate cancer xenograft model. Cancer prevention research (Philadelphia, Pa.) 2, 557-565 (2009). https://doi.org:10.1158/1940-6207.capr-08-0188
  51. Aggarwal, A., Yuan, Z., Barletta, J. A., Lorch, J. H. & Nehs, M. A. Ketogenic diet combined with antioxidant N-acetylcysteine inhibits tumor growth in a mouse model of anaplastic thyroid cancer. Surgery 167, 87-93 (2020). https://doi.org:10.1016/j.surg.2019.06.042
  52. Klement, R. J., Champ, C. E., Otto, C. & Kammerer, U. Anti-Tumor Effects of Ketogenic Diets in Mice: A Meta-Analysis. PLoS One 11, e0155050 (2016). https://doi.org:10.1371/journal.pone.0155050
  53. Sargaco, B., Oliveira, P. A., Antunes, M. L. & Moreira, A. C. Effects of the Ketogenic Diet in the Treatment of Gliomas: A Systematic Review. Nutrients 14 (2022). https://doi.org:10.3390/nu14051007
  54. Puchalska, P. & Crawford, P. A. Multi-dimensional Roles of Ketone Bodies in Fuel Metabolism, Signaling, and Therapeutics. Cell Metab 25, 262-284 (2017). https://doi.org:10.1016/j.cmet.2016.12.022
  55. Soldati, L. et al. The influence of diet on anti-cancer immune responsiveness. J Transl Med 16, 75 (2018). https://doi.org:10.1186/s12967-018-1448-0
  56. Ferrere, G. et al. Ketogenic diet and ketone bodies enhance the anticancer effects of PD-1 blockade. JCI Insight 6 (2021). https://doi.org:10.1172/jci.insight.145207
  57. Murphy, S. et al. Overcome Prostate Cancer Resistance to Immune Checkpoint Therapy with Ketogenic Diet-Induced Epigenetic Reprogramming. bioRxiv (2023). https://doi.org:10.1101/2023.08.07.552383
  58. Abdelwahab, M. et al. The ketogenic diet is an effective adjuvant to radiation therapy for the treatment of malignant glioma. PLoS One 7 (2012). https://doi.org:10.1371/journal.pone.0036197
  59. Allen, B. G. et al. Ketogenic diets enhance oxidative stress and radio-chemo-therapy responses in lung cancer xenografts. Clin Cancer Res 19, 3905-3913 (2013). https://doi.org:10.1158/1078-0432.CCR-12-0287
  60. Yang, L. et al. Ketogenic diet and chemotherapy combine to disrupt pancreatic cancer metabolism and growth. Med 3, 119-136 (2022). https://doi.org:10.1016/j.medj.2021.12.008
  61. Mukherjee, P. et al. Therapeutic benefit of combining calorie-restricted ketogenic diet and glutamine targeting in late-stage experimental glioblastoma. Commun Biol 2, 200 (2019). https://doi.org:10.1038/s42003-019-0455-x
  62. Zhuang, Y., Chan, D. K., Haugrud, A. B. & Miskimins, W. K. Mechanisms by which low glucose enhances the cytotoxicity of metformin to cancer cells both in vitro and in vivo. PLoS One 9, e108444 (2014). https://doi.org:10.1371/journal.pone.0108444
  63. Morscher, R. J. et al. Combination of metronomic cyclophosphamide and dietary intervention inhibits neuroblastoma growth in a CD1-nu mouse model. Oncotarget 7, 17060-17073 (2016). https://doi.org:10.18632/oncotarget.7929
  64. Tisdale, M. J., Brennan, R. A. & Fearon, K. C. Reduction of weight loss and tumour size in a cachexia model by a high fat diet. Br J Cancer 56, 39-43 (1987). 
  65. Koutnik, A. P. e. a. Ketone Bodies Attenuate Wasting in Models of Atrophy. Journal of Sarcopenia, Cachexia, and Muscle Epub. (2020). 
  66. Shukla, S. K. et al. Metabolic reprogramming induced by ketone bodies diminishes pancreatic cancer cachexia. Cancer Metab 2, 18 (2014). https://doi.org:10.1186/2049-3002-2-18
  67. Khodabakhshi, A., Seyfried, T. N., Kalamian, M., Beheshti, M. & Davoodi, S. H. Does a ketogenic diet have beneficial effects on quality of life, physical activity or biomarkers in patients with breast cancer: a randomized controlled clinical trial. Nutr J 19, 87 (2020). https://doi.org:10.1186/s12937-020-00596-y
  68. Thomas, L. E. How evidence-based medicine biases physicians against nutrition. Med Hypotheses 81, 1116-1119 (2013). https://doi.org:10.1016/j.mehy.2013.10.016
  69. Mroz, E. A. & Rocco, J. W. The challenges of tumor genetic diversity. Cancer 123, 917-927 (2017). https://doi.org:10.1002/cncr.30430
  70. Corr, P. G., Hudson, W. & Kalita, N. Cancer Care and Nutrition Counseling: The Role of the Oncologist in Patient Learning and Behavior Change. Glob Adv Integr Med Health 13, 27536130241285029 (2024). https://doi.org:10.1177/27536130241285029
  71. Meyers, D. E. et al. Trends in drug revenue among major pharmaceutical companies: A 2010-2019 cohort study. Cancer 128, 311-316 (2022). https://doi.org:10.1002/cncr.33934
  72. Winn, A. N., Ekwueme, D. U., Guy, G. P., Jr. & Neumann, P. J. Cost-Utility Analysis of Cancer Prevention, Treatment, and Control: A Systematic Review. Am J Prev Med50, 241-248 (2016). https://doi.org:10.1016/j.amepre.2015.08.009

Related topics